Échantillon aléatoire simple
Qu'est-ce qu'un échantillon aléatoire simple ?
Un échantillon aléatoire simple est un sous-ensemble d'une population statistique dans laquelle chaque membre du sous-ensemble a une probabilité égale d'être choisi. Un échantillon aléatoire simple est censé être une représentation impartiale d'un groupe.
Points clés à retenir
- Un échantillon aléatoire simple prend un petit, partie aléatoire de l'ensemble de la population pour représenter l'ensemble des données, où chaque membre a une probabilité égale d'être choisi.
- Les chercheurs peuvent créer un échantillon aléatoire simple en utilisant des méthodes telles que les loteries ou les tirages au sort.
- Une erreur d'échantillonnage peut se produire avec un échantillon aléatoire simple si l'échantillon ne reflète pas avec précision la population qu'il est censé représenter.
Échantillon aléatoire simple
Comprendre l'échantillon aléatoire simple
Les chercheurs peuvent créer un échantillon aléatoire simple en utilisant plusieurs méthodes. Avec une méthode de loterie, chaque membre de la population se voit attribuer un numéro, après quoi les nombres sont choisis au hasard.
Un exemple d'échantillon aléatoire simple serait les noms de 25 employés choisis parmi un chapeau d'une entreprise de 250 employés. Dans ce cas, la population est de 250 salariés, et l'échantillon est aléatoire car chaque employé a une chance égale d'être choisi. L'échantillonnage aléatoire est utilisé en science pour effectuer des tests de contrôle randomisés ou pour des expériences en aveugle.
L'exemple dans lequel les noms de 25 employés sur 250 sont tirés d'un chapeau est un exemple de la méthode de loterie au travail. Chacun des 250 employés se verrait attribuer un numéro entre 1 et 250, après quoi 25 de ces nombres seraient choisis au hasard.
Parce que les individus qui composent le sous-ensemble du groupe plus large sont choisis au hasard, chaque individu de la grande population a la même probabilité d'être sélectionné. Cela crée, dans la plupart des cas, un sous-ensemble équilibré qui présente le plus grand potentiel pour représenter le groupe plus large dans son ensemble, libre de tout parti pris.
Pour les populations plus importantes, une méthode de loterie manuelle peut être assez onéreuse. La sélection d'un échantillon aléatoire à partir d'une grande population nécessite généralement un processus généré par ordinateur, par laquelle la même méthodologie que la méthode de loterie est utilisée, seules les attributions de numéros et les sélections ultérieures sont effectuées par des ordinateurs, pas les humains.
Place à l'erreur
Avec un échantillon aléatoire simple, il doit y avoir une marge d'erreur représentée par une variance plus et moins (erreur d'échantillonnage). Par exemple, si dans un lycée de 1, 000 élèves une enquête devait être menée pour déterminer combien d'élèves sont gauchers, l'échantillonnage aléatoire peut déterminer que huit des 100 échantillonnés sont gauchers. La conclusion serait que 8% de la population étudiante du lycée sont gauchers, alors qu'en fait la moyenne mondiale serait plus proche de 10 %.
Il en est de même quel que soit le sujet. Une enquête sur le pourcentage de la population étudiante qui a les yeux verts ou qui est physiquement incapable donnerait lieu à une probabilité mathématique basée sur un simple sondage aléatoire, mais toujours avec un écart positif ou négatif. La seule façon d'avoir un taux de précision de 100 % serait de sonder tous les 1, 000 étudiants qui, tant que c'est possible, serait peu pratique.
Échantillon aléatoire simple contre échantillon aléatoire stratifié
Les échantillons aléatoires simples et les échantillons aléatoires stratifiés sont tous deux des outils de mesure statistique. Un échantillon aléatoire simple est utilisé pour représenter l'ensemble de la population de données. Un échantillon aléatoire stratifié divise la population en groupes plus petits, ou strates, sur la base de caractéristiques communes.
Contrairement aux échantillons aléatoires simples, des échantillons aléatoires stratifiés sont utilisés avec des populations qui peuvent être facilement divisées en différents sous-groupes ou sous-ensembles. Ces groupes sont basés sur certains critères, puis les éléments de chacun sont choisis au hasard en proportion de la taille du groupe par rapport à la population.
Cette méthode d'échantillonnage signifie qu'il y aura des sélections de chaque groupe différent, dont la taille est basée sur sa proportion par rapport à l'ensemble de la population. Mais les chercheurs doivent s'assurer que les strates ne se chevauchent pas. Chaque point de la population ne doit appartenir qu'à une seule strate, de sorte que chaque point s'exclut mutuellement. Le chevauchement des strates augmenterait la probabilité que certaines données soient incluses, biaisant ainsi l'échantillon.
Avantages et inconvénients des échantillons aléatoires simples
Alors que les échantillons aléatoires simples sont faciles à utiliser, ils présentent des inconvénients majeurs qui peuvent rendre les données inutiles.
Avantages
La facilité d'utilisation représente le plus grand avantage de l'échantillonnage aléatoire simple. Contrairement aux méthodes d'échantillonnage plus compliquées, tels que l'échantillonnage aléatoire stratifié et l'échantillonnage probabiliste, il n'est pas nécessaire de diviser la population en sous-populations ou de prendre d'autres mesures supplémentaires avant de sélectionner les membres de la population au hasard.
Un échantillon aléatoire simple est censé être une représentation impartiale d'un groupe. Il est considéré comme un moyen équitable de sélectionner un échantillon dans une population plus large puisque chaque membre de la population a une chance égale d'être sélectionné.
Bien que l'échantillonnage aléatoire simple soit destiné à être une approche impartiale de l'enquête, un biais de sélection de l'échantillon peut se produire. Lorsqu'un ensemble d'échantillons de la population plus large n'est pas assez inclusif, la représentation de l'ensemble de la population est faussée et nécessite des techniques d'échantillonnage supplémentaires.
Désavantages
Une erreur d'échantillonnage peut se produire avec un échantillon aléatoire simple si l'échantillon ne reflète pas avec précision la population qu'il est censé représenter. Par exemple, dans notre échantillon aléatoire simple de 25 salariés, il serait possible de tirer 25 hommes même si la population se composait de 125 femmes et 125 hommes.
Pour cette raison, l'échantillonnage aléatoire simple est plus couramment utilisé lorsque le chercheur connaît peu la population. Si le chercheur en savait plus, il serait préférable d'utiliser une technique d'échantillonnage différente, tels que l'échantillonnage aléatoire stratifié, ce qui permet de rendre compte des différences au sein de la population, comme l'âge, course, ou le sexe. D'autres inconvénients incluent le fait que pour l'échantillonnage de grandes populations, le processus peut être long et coûteux par rapport à d'autres méthodes.
Pourquoi un échantillon aléatoire simple est-il simple ?
Il n'existe pas de méthode plus simple pour extraire un échantillon de recherche à partir d'une population plus large que l'échantillonnage aléatoire simple. La sélection d'un nombre suffisant de sujets de manière complètement aléatoire dans la population plus large permet également d'obtenir un échantillon qui peut être représentatif du groupe étudié.
Quels sont les inconvénients d'un échantillon aléatoire simple?
Parmi les inconvénients de cette technique, il y a la difficulté d'accéder aux répondants qui peuvent être tirés de la population plus large, plus de temps, des coûts plus élevés, et le fait qu'un biais peut encore se produire dans certaines circonstances.
Qu'est-ce qu'un échantillon aléatoire stratifié ?
Un échantillon aléatoire stratifié, contrairement à un simple tirage, divise d'abord la population en groupes plus petits, ou strates, sur la base de caractéristiques communes. Par conséquent, une stratégie d'échantillonnage stratifié garantira que les membres de chaque sous-groupe sont inclus dans l'analyse des données. L'échantillonnage stratifié est utilisé pour mettre en évidence les différences entre les groupes d'une population, par opposition à un échantillonnage aléatoire simple, qui traite tous les membres d'une population sur un pied d'égalité, avec une probabilité égale d'être échantillonné.
Comment les échantillons aléatoires sont-ils utilisés ?
L'utilisation d'un échantillonnage aléatoire simple permet aux chercheurs de faire des généralisations sur une population spécifique et de laisser de côté tout biais. En utilisant des techniques statistiques, des inférences et des prédictions peuvent être faites sur la population sans avoir à enquêter ou à collecter des données auprès de chaque individu de cette population.
la finance
- Comment créer une richesse générationnelle
- Exemple de budget pour vous aider à créer le vôtre
- 5 raisons pour lesquelles votre succès financier est la meilleure vengeance
- La Cour suprême des États-Unis examinera la constitutionnalité du principal régulateur financier
- L'importance de l'épargne :comment j'ai vécu une année au chômage
- Comment établir un crédit commercial pour une petite entreprise
-
Comment devenir barman à Las Vegas
Las Vegas est le rêve dun barman en raison de lafflux constant de touristes et de vacanciers. Le barman est un poste dans le secteur des services qui a un potentiel de gains important avec la bonne a...
-
Quels sont les avantages des cartes magnétiques ?
De nombreuses personnes utilisent des cartes magnétiques au quotidien. Une carte magnétique est une carte en plastique avec les informations du propriétaire intégrées sur une bande magnétique. Cette ...
-
50 affirmations matinales pour changer votre vie !
Peu importe à quoi ressemblait ta veille, chaque jour apporte une nouvelle opportunité de repartir à neuf. Lune des meilleures façons de rendre chaque jour le meilleur possible est de pratiquer les af...
-
Quelle est la valeur du dollar au Canada?
La valeur des dollars au Canada dépend du taux de change. Le Canada et les États-Unis appellent tous deux leur unité monétaire le dollar. Malgré le nom, ce sont deux devises différentes et ont des va...