R-carré
Qu'est-ce que le R au carré ?
R au carré (R 2 ) est une mesure statistique qui représente la proportion de la variance d'une variable dépendante expliquée par une ou des variables indépendantes dans un modèle de régression. Alors que la corrélation explique la force de la relation entre une variable indépendante et dépendante, R-carré explique dans quelle mesure la variance d'une variable explique la variance de la deuxième variable. Donc, si le R 2 d'un modèle est de 0,50, alors environ la moitié de la variation observée peut être expliquée par les entrées du modèle.
Points clés à retenir
- R-Squared est une mesure statistique de l'ajustement qui indique dans quelle mesure la variation d'une variable dépendante est expliquée par la ou les variables indépendantes dans un modèle de régression.
- En investissant, Le R-carré est généralement interprété comme le pourcentage des mouvements d'un fonds ou d'un titre qui peuvent être expliqués par les mouvements d'un indice de référence.
- Un R au carré de 100 % signifie que tous les mouvements d'un titre (ou d'autres variables dépendantes) sont entièrement expliqués par les mouvements de l'indice (ou de la ou des variables indépendantes qui vous intéressent).
R-carré
Formule pour R-carré
R2=1−Variation totaleVariation inexpliquée
Le calcul réel du R au carré nécessite plusieurs étapes. Cela comprend la prise des points de données (observations) des variables dépendantes et indépendantes et la recherche de la ligne de meilleur ajustement, souvent à partir d'un modèle de régression. À partir de là, vous calculeriez les valeurs prédites, soustraire les valeurs réelles et mettre les résultats au carré. Cela donne une liste d'erreurs au carré, qui est ensuite additionné et égal à la variance inexpliquée.
Pour calculer la variance totale, vous soustrayez la valeur réelle moyenne de chacune des valeurs réelles, mettez les résultats au carré et additionnez-les. De là, diviser la première somme d'erreurs (variance expliquée) par la deuxième somme (variance totale), soustraire le résultat de un, et vous avez le R au carré.
Ce que R-Squared peut vous dire
En investissant, Le R au carré est généralement interprété comme le pourcentage des mouvements d'un fonds ou d'un titre qui peuvent être expliqués par les mouvements d'un indice de référence. Par exemple, un R au carré pour un titre à revenu fixe par rapport à un indice obligataire identifie la proportion du mouvement de prix du titre qui est prévisible sur la base d'un mouvement de prix de l'indice.
La même chose peut être appliquée à une action par rapport à l'indice S&P 500, ou tout autre indice pertinent. Il peut également être appelé coefficient de détermination.
Les valeurs R au carré vont de 0 à 1 et sont généralement exprimées en pourcentages de 0 % à 100 %. Un R au carré de 100 % signifie que tous les mouvements d'un titre (ou d'une autre variable dépendante) sont entièrement expliqués par les mouvements de l'indice (ou de la ou des variables indépendantes qui vous intéressent).
En investissant, un R-carré élevé, entre 85 % et 100 %, indique que la performance de l'action ou du fonds évolue relativement en ligne avec l'indice. Un fonds avec un R-carré faible, à 70 % ou moins, indique que le titre ne suit généralement pas les mouvements de l'indice. Une valeur R au carré plus élevée indiquera un chiffre bêta plus utile. Par exemple, si une action ou un fonds a une valeur R au carré proche de 100 %, mais a un bêta inférieur à 1, il offre très probablement des rendements corrigés du risque plus élevés.
R-carré vs. R-carré ajusté
R-Squared ne fonctionne comme prévu que dans un modèle de régression linéaire simple avec une variable explicative. Avec une régression multiple composée de plusieurs variables indépendantes, le R-Squared doit être ajusté.
Le R-carré ajusté compare la puissance descriptive des modèles de régression qui incluent divers nombres de prédicteurs. Chaque prédicteur ajouté à un modèle augmente le R au carré et ne le diminue jamais. Ainsi, un modèle avec plus de termes peut sembler mieux s'adapter simplement parce qu'il a plus de termes, tandis que le R-carré ajusté compense l'ajout de variables et n'augmente que si le nouveau terme améliore le modèle au-dessus de ce qui serait obtenu par probabilité et diminue lorsqu'un prédicteur améliore le modèle moins que ce qui est prédit par hasard.
Dans un état de surajustement, une valeur incorrectement élevée de R au carré est obtenue, même lorsque le modèle a en fait une capacité de prédiction réduite. Ce n'est pas le cas avec le R-carré ajusté.
R-carré vs bêta
Beta et R-carré sont deux liés, Mais différent, mesures de corrélation, mais le bêta est une mesure du risque relatif. Un fonds commun de placement avec un R-carré élevé est fortement corrélé avec un indice de référence. Si le bêta est également élevé, il peut produire des rendements supérieurs à l'indice de référence, en particulier dans les marchés haussiers. Le R au carré mesure à quel point chaque variation du prix d'un actif est corrélée à un indice de référence.
Le bêta mesure l'ampleur de ces changements de prix par rapport à un benchmark. Utilisé ensemble, R-carré et bêta donnent aux investisseurs une image complète de la performance des gestionnaires d'actifs. Un bêta d'exactement 1,0 signifie que le risque (volatilité) de l'actif est identique à celui de son indice de référence. Essentiellement, Le R-carré est une technique d'analyse statistique pour l'utilisation pratique et la fiabilité des bêtas de titres.
Limites de R-carré
R-carré vous donnera une estimation de la relation entre les mouvements d'une variable dépendante basée sur les mouvements d'une variable indépendante. Il ne vous dit pas si le modèle que vous avez choisi est bon ou mauvais, il ne vous dira pas non plus si les données et les prévisions sont biaisées. Un R carré élevé ou faible n'est pas nécessairement bon ou mauvais, car il ne traduit pas la fiabilité du modèle, ni si vous avez choisi la bonne régression. Vous pouvez obtenir un faible R-carré pour un bon modèle, ou un R-carré élevé pour un modèle mal ajusté, et vice versa.
Qu'est-ce qu'une bonne valeur R au carré ?
Ce qui est considéré comme une « bonne » valeur R au carré dépendra du contexte. Dans certains domaines, comme les sciences sociales, même un R-carré relativement faible tel que 0,5 pourrait être considéré comme relativement fort. Dans d'autres domaines, les normes pour une bonne lecture R-Squared peuvent être beaucoup plus élevées, comme 0,9 ou plus. En finance, un R-carré supérieur à 0,7 serait généralement considéré comme montrant un niveau élevé de corrélation, alors qu'une mesure inférieure à 0,4 montrerait une faible corrélation. Ce n'est pas une règle stricte, cependant, et dépendra de l'analyse spécifique.
Que signifie une valeur R au carré de 0,9 ?
Essentiellement, une valeur R-carré de 0,9 indiquerait que 90 % de la variance de la variable dépendante étudiée s'explique par la variance de la variable indépendante. Par exemple, si un OPC a une valeur R au carré de 0,9 par rapport à son indice de référence, cela indiquerait que 90 % de la variance du fonds s'explique par la variance de son indice de référence.
Un R-carré plus élevé est-il meilleur ?
Encore ici, ça dépend du contexte. Supposons que vous recherchiez un fonds indiciel qui suivra un indice spécifique aussi étroitement que possible. Dans ce scénario, vous voudriez que le R-Squared du fonds soit aussi élevé que possible puisque son objectif est d'égaler, plutôt que de dépasser, l'indice. Si par contre, vous recherchez des fonds gérés activement, un R-carré élevé peut être considéré comme un mauvais signe, indiquant que les gestionnaires des fonds n'ajoutent pas suffisamment de valeur par rapport à leurs indices de référence.
la finance
- Types d'assurance auto :de quelle couverture ai-je besoin ?
- Qu'est-ce que le financement par actions ?
- Devriez-vous contracter une deuxième hypothèque?
- Comment réussir une année sans achat ou à faible achat
- N'abandonnez pas vos rêves ! 8 raisons pour lesquelles !
- 7 prêts auto pour mauvais crédit en 2021
-
Raisons de geler les comptes bancaires
Vous ne saurez peut-être pas que votre compte est gelé avant les faits. Un compte bancaire bloqué peut résulter de plusieurs problèmes, mais lexplication la plus courante est que vous avez pris telle...
-
4 façons dont le pessimisme peut réellement améliorer vos finances
Même si je nai jamais eu de merles bleus pour maider à nettoyer ma maison ou quoi que ce soit, Jai tendance à être une personne assez optimiste. Jai la foi que les gens sont surtout gentils, le monde ...
-
Vous avez du mal à économiser de l'argent ? Ces stratégies peuvent aider
Économiser de largent peut être difficile, surtout sans plan solide. Heureusement, il existe de nombreuses stratégies qui peuvent facilement vous aider à économiser plus dargent. (iStock) La pandémi...
-
Qu'est-ce que la diversification des produits ?
La diversification des produits est une stratégie employée par une entreprise pour augmenter la rentabilitéRatios de rentabilitéLes ratios de rentabilité sont des mesures financières utilisées par les...