Erreur de type II
Qu'est-ce qu'une erreur de type II ?
Une erreur de type II est un terme statistique utilisé dans le contexte des tests d'hypothèses qui décrit l'erreur qui se produit lorsque l'on accepte une hypothèse nulle qui est en fait fausse. Une erreur de type II produit un faux négatif, également connu sous le nom d'erreur d'omission. Par exemple, un test de dépistage d'une maladie peut rapporter un résultat négatif, quand le patient est, En réalité, infecté. Il s'agit d'une erreur de type II car nous acceptons la conclusion du test comme négative, même si c'est faux.
En analyse statistique, une erreur de type I est le rejet d'une hypothèse nulle vraie, alors qu'une erreur de type II décrit l'erreur qui se produit lorsque l'on ne rejette pas une hypothèse nulle c'est effectivement faux. L'erreur rejette l'hypothèse alternative, même si cela ne se produit pas par hasard.
Points clés à retenir
- Une erreur de type II est définie comme la probabilité de retenir à tort l'hypothèse nulle, alors qu'en fait, il n'est pas applicable à l'ensemble de la population.
- Une erreur de type II est essentiellement un faux négatif.
- Une erreur de type II peut être réduite en établissant des critères plus stricts pour rejeter une hypothèse nulle, bien que cela augmente les chances d'un faux positif.
- Les analystes doivent peser la probabilité et l'impact des erreurs de type II avec les erreurs de type I.
Comprendre une erreur de type II
Une erreur de type II, également appelée erreur du second type ou erreur bêta, confirme une idée qui aurait dû être rejetée, tel que, par exemple, prétendant que deux observances sont les mêmes, bien qu'ils soient différents. Une erreur de type II ne rejette pas l'hypothèse nulle, même si l'hypothèse alternative est le véritable état de nature. En d'autres termes, une fausse conclusion est acceptée comme vraie.
Une erreur de type II peut être réduite en établissant des critères plus stricts pour rejeter une hypothèse nulle. Par exemple, si un analyste considère tout ce qui se situe dans les limites +/- d'un intervalle de confiance à 95 % comme statistiquement non significatif (un résultat négatif), puis en diminuant cette tolérance à +/- 90%, et par la suite en rétrécissant les limites, vous obtiendrez moins de résultats négatifs, et ainsi réduire les risques d'un faux négatif.
En prenant ces mesures, cependant, tend à augmenter les chances de rencontrer une erreur de type I, un résultat faussement positif. Lors de la réalisation d'un test d'hypothèse, la probabilité ou le risque de commettre une erreur de type I ou de type II doit être pris en compte.
Les mesures prises pour réduire les chances de rencontrer une erreur de type II ont tendance à augmenter la probabilité d'une erreur de type I.
Erreurs de type I par rapport aux erreurs de type II
La différence entre une erreur de type II et une erreur de type I est qu'une erreur de type I rejette l'hypothèse nulle lorsqu'elle est vraie (c'est-à-dire, un faux positif). La probabilité de commettre une erreur de type I est égale au niveau de signification qui a été fixé pour le test d'hypothèse. Par conséquent, si le niveau de signification est de 0,05, il y a 5% de chance qu'une erreur de type I se produise.
La probabilité de commettre une erreur de type II est égale à un moins la puissance du test, également connu sous le nom de bêta. La puissance du test pourrait être augmentée en augmentant la taille de l'échantillon, ce qui diminue le risque de commettre une erreur de type II.
Exemple d'erreur de type II
Supposons qu'une entreprise de biotechnologie souhaite comparer l'efficacité de deux de ses médicaments pour traiter le diabète. L'hypothèse nulle stipule que les deux médicaments sont également efficaces. Une hypothèse nulle, H
La société de biotechnologie met en œuvre un grand essai clinique de 3, 000 patients diabétiques pour comparer les traitements. L'entreprise divise au hasard les 3, 000 patients en deux groupes de taille égale, donner à un groupe l'un des traitements et à l'autre groupe l'autre traitement. Il sélectionne un seuil de signification de 0,05, ce qui indique qu'il est prêt à accepter une probabilité de 5 % de rejeter l'hypothèse nulle lorsqu'elle est vraie ou une probabilité de 5 % de commettre une erreur de type I.
Supposons que le bêta est calculé à 0,025, ou 2,5%. Par conséquent, la probabilité de commettre une erreur de type II est de 97,5%. Si les deux médicaments ne sont pas égaux, l'hypothèse nulle doit être rejetée. Cependant, si la société de biotechnologie ne rejette pas l'hypothèse nulle lorsque les médicaments ne sont pas d'égale efficacité, une erreur de type II se produit.
la finance
- Qu'est-ce que l'intérêt imputé?
- Les 7 types de pensions livrées
- Débentures convertibles et non convertibles
- Les prêts relais expliqués
- Qu'est-ce qu'un prêt personnel signature ?
- Qu'est-ce que le commerce du papier ?
- Qu'est-ce que l'investissement offshore ?
- Utilisation de dérivés sur l'inflation
- Un guide des CD liés à des actions
-
Quel type d'IRA ai-je ?
Il est important de savoir quel type de compte de retraite individuel (IRA) vous possédez, tant du point de vue de la planification fiscale que du point de vue de lépargne-retraite. Les IRA traditionn...
-
Codes d'indicateur de type de client (CTI)
Que sont les codes dindicateur de type de client (CTI) ? Les codes indicateurs de type de client (codes CTI) font partie dun système qui identifie les transactions déchange à terme effectuées par le...